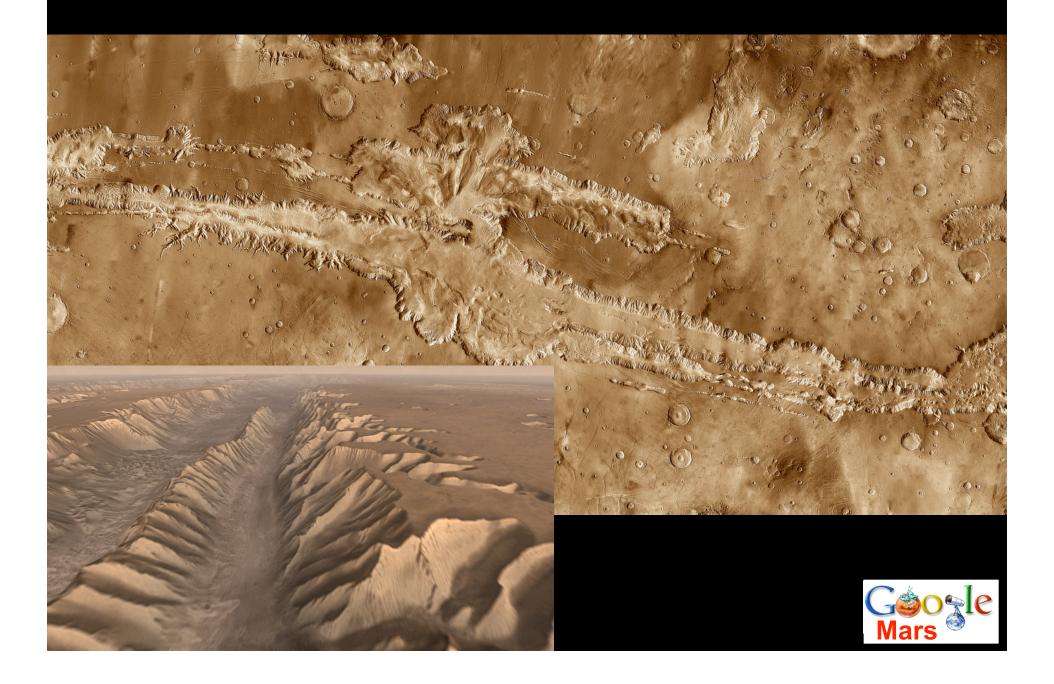


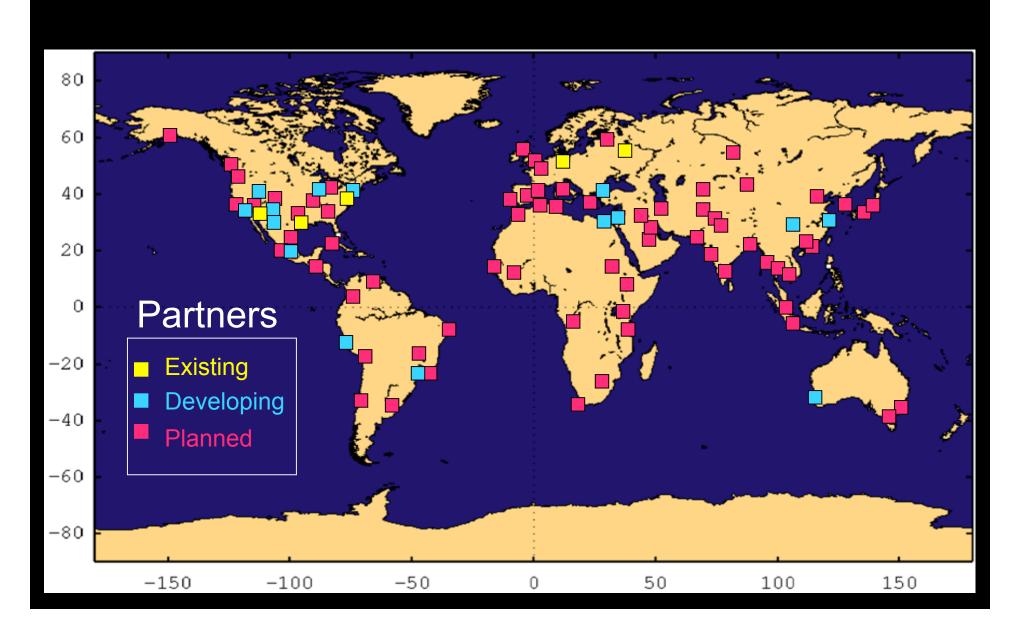
Mars Global Surveyor TES

Spirit Rover Mini-TES


Mars Odyssey THEMIS

Opportunity Rover Mini-TES

THEMIS Infrared Mosaic of Valles Mariners

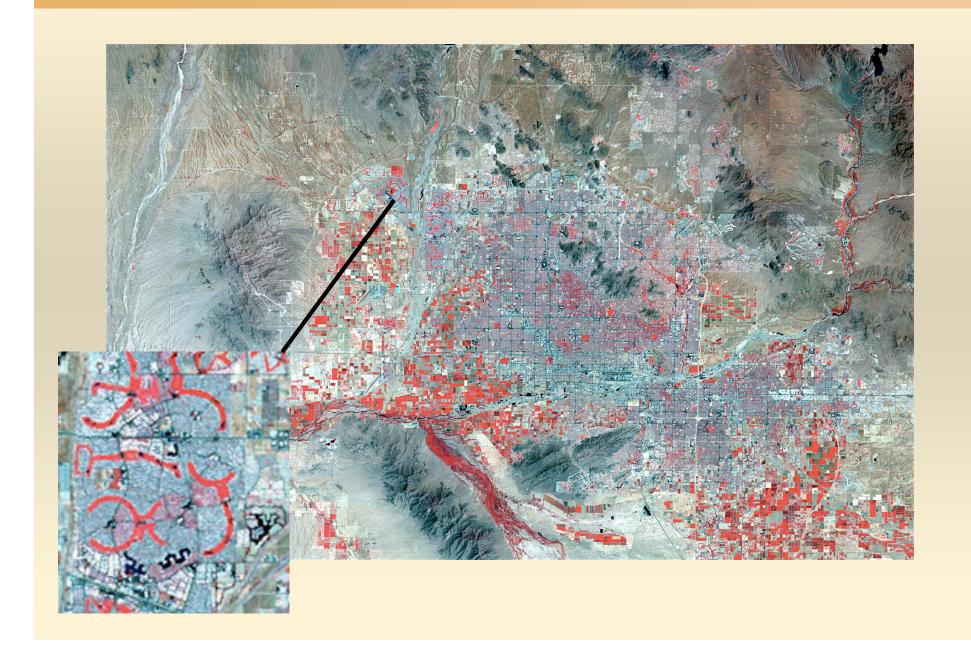


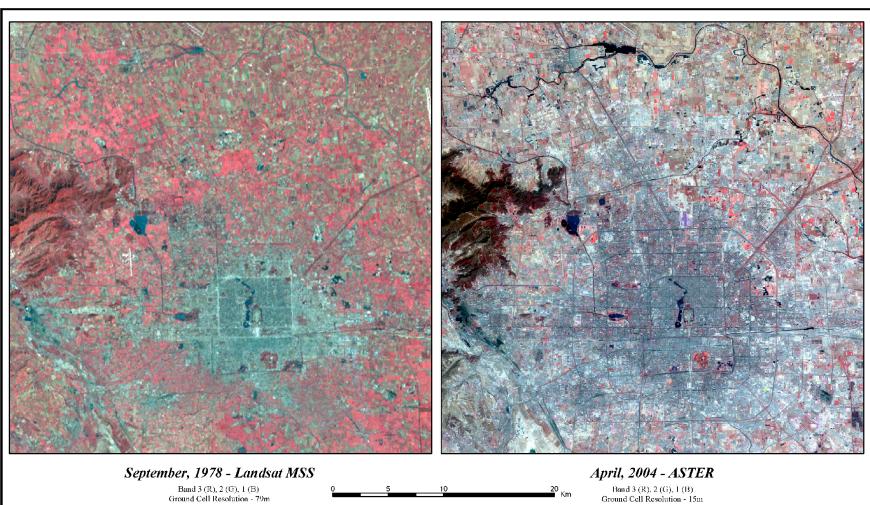
CitySat Overview

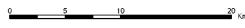
- Why?
 - Cities and urban environments are not routinely monitored nor systematically studied, yet represent an important, and rapidly growing, component of global climate system
 - 100-Cites Project begun in 1997 as member of ASTER science team
 - Despite concerted efforts, city observations often fall to low priority
 - ASU hosted a workshop on "Next Generation Urban Observations" in April 2003

100 Cities Project:

Standardized, repeated urban remote sensing


Key science questions and issues


- Assess affects that cities have on local and regional meteorology, climate, air quality, and human and ecosystem health
- Understand urban growth impacts on key parameters, such as energy and water
- Quantify thermal energy fluxes across heterogeneous urban surface
- Understand and model the effect of urban land cover on land-atmosphere interactions
- Hazard assessment
- Urban-rural-agriculural-natural boundary changes and effects through time


CitySat Concept

- Small, focused mission that provides frequent (≤3 day repeat cycle) observations of cities worldwide
- Research science, not "operational", approach
 - Complements large missions
 - Rapid respond to new discoveries and needs
 - Opportunity to try new approaches and observations
- Small instrument approach
 - What can be done with existing, low-cost instruments
 - Not, what is everything everyone might want to measure

Phoenix Regional View - 1998

Band 3 (R), 2 (G), 1 (B) Ground Cell Resolution - 15m

北京 Beijing

Land-Cover Classification

0 **10** km

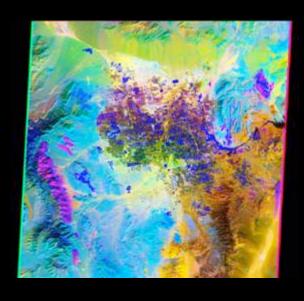
- Can identify various natural and built classes
- Temporal data series can be used to track changes/conversion between land-cover types/land use
- Neural networks and image segmentation techniques also powerful emerging tools

Cultivated Vegetation (Active) Disturbed (Asphalt and Concrete) **Cultivated Grass** Undisturbed Fluvial and Lacustrine Sediments (Canals) Compacted Soil Compacted Soil (Prior Agricultural Use) Disturbed (Mesic Residential) Vegetation Disturbed (Xeric Residential) Disturbed (Commercial/Industrial) Water

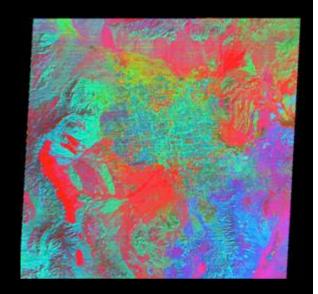
NSF Long Term Ecological Research Site Grant to ASU (Christensen, Stefanov, Ramsey 2001-present)

ASU 100-Cities Classification Pilot Study – 10 Cities: % Land Cover/Class

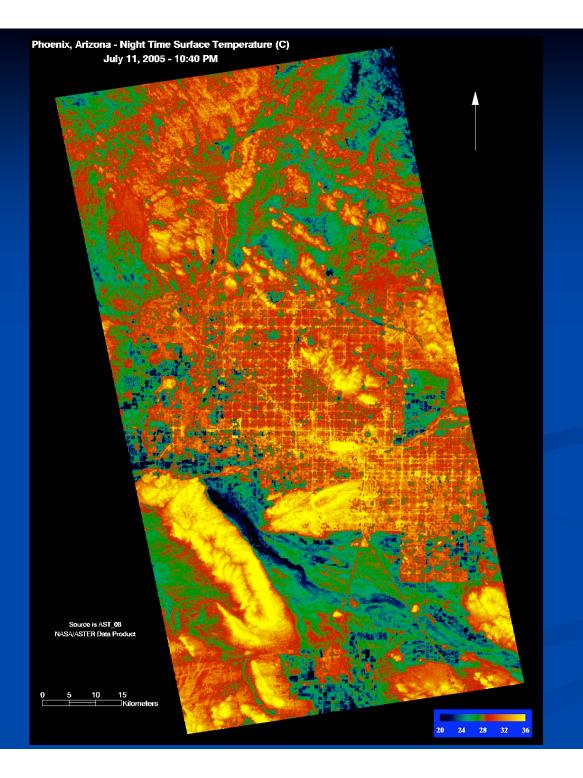
CitySat Approach (con't)


- Visible, near-IR, thermal-IR instruments
- Include an appropriate visible imager, but don't duplicate expensive, existing capability
 - Example: Very high resolution imagery available but don't necessarily need it every day or week

Multi-Wavelength Approach


Visible to near-infrared 15 m/pixel

- Major land cover classes
- Vegetation health
- Soil properties
- Soil contamination


Shortwave infrared 30 m/pixel

- Urban surface materials
- Rooftop materials
- Energy use
- Fugitive dust production
- Metal contamination
- Ecological communities

Thermal infrared 90 m/pixel

- Surface energy balances
- Regional climate models
- Anthropogenic heat sources
- Heat island development
- Surface composition

Urban Heat Island Maps

Phoenix – Nighttime

ASTER Surface Temperature

July 11, 2005

Max Daytime
Temperature
43 °C / 111 °F

<u>Time</u> <u>Temperature</u> 10:51 PM 98.1 °F / 36.7 °C

Urban Heat Island

CitySat Mission Design

- Obtain frequent data of all large cites worldwide
 - 2-5 times per week
 - Visible through infrared
 - Day/Night
 - Gimbaled for off-nadir pointing
 - ~±20°
 - Provides much more frequent coverage for modest field of view instrument
 - Example: ±20° would reduce repeat time from 16 days to 3 days
 - Non-nadir viewing
 - 3-D observations of urban heat island

Suggested CitySat Instrumentation

- Visible
 - 5-m
 - 5 spectral bands
- Near-IR
 - 15-m
 - 5-10 spectral bands
- Thermal IR
 - 40-m
 - 5-10 spectral bands
- (Imaging Lidar)


THEMIS Instrument

- 9-band multi-spectral IR imager
 - Uncooled microbolometer
 - 6.5-15.5 µm
- 5-band visible imager
 - 0.43-0.85 µm
- 100-m spatial resolution in IR
- 18-m spatial resolution in visible

• Mass: 12.2 kg

• Size: 29 x 38 x 55 cm

• Power: 14 W

Instrument Concepts

<u>Element</u>	<u>THEMIS</u>	E-THEMIS	<u>Aggressive</u>	Cooled
Altitude	400 km	400 km	520 km	520 km
Ground Velocity	7.2 km/sec	7.2 km/sec	7.0 km/sec	7.0 km/sec
Effective Aperture	12 cm	14 cm	37 cm	39 cm
Array Size	320x240	640x480x2	640x480	1024x1x5
Detector Size	50 μm	25 μm	25 μm	25 µm
Operating Temp	300 K	300 K	300 K	60 K
Frame Rate	30 Hz	48 Hz	48 Hz	
# Spectral Bands	9	8	8	5
Cnot Cito (w/ IMC)	4.4.0			
Spot Size (w/ IMC)	110 m	55 m	30 m	20 m
Swath Width	110 m 32 km	32km/64 km	30 m 19 km/38 km	20 m 60 km
	32 km			

CitySat Mission Conceptual Design

- Small spacecraft bus (\$25 M)
- 2-3 modest instruments based on existing designs
 - Visible through infrared (\$40 M)
- Small launch vehicle (\$30 M)
- Operated from a university or similar research institution
- Extended team of science investigators
- Dedicated spacecraft
 - 52° inclination; 93 minute period
 - ~3-day repeat cycle
 - Fixed or varying solar illumination angle
 - Orbit would cover:
 - Majority of urban centers
 - Significant number of continental lakes and coastal waters, volcanic hazards, alpine glaciers

Where to go next?

- Articulate key science planning issues for urban and measurement requirements for environmental assessment and monitoring
- Address the question of whether a small mission could address critical pieces of the global environmental monitoring program
 - Next planned near-IR/thermal-IR mission is HyspIRI
 - Tier 2 mission in the 2007 NRC Decadal Survey
- Venture-class mission could be an opportunity for a dedicated urban satellite
 - ≤\$100 M over ~2 years

100 CITIES PROJECT

Sensing for Solutions — Bridging Cities and Science

Example: ASU Mission Operations

- THEMIS daily image targeting
 - Manual and automated image targeting
 - 100-200 images per day
- Data processing
 - 300-node computing cluster
 - 0.5 Gbytes of data downlinked per day
 - Full data calibration
 - 100 Terabytes of on-line storage
- Data distribution
 - 13 Co-Investigators in U.S.
 - ~ 1-Tbyte distributed to each Co-I per month
- Current ASU Mars mission staff
 - 4 Staff Scientists
 - 2 Data Processors

 - 1 Web Administrator
 - 5 Graduate Students

- 3 Mission Planners
 - 2 Data Validation/Archivists
- 7 Software Engineers
 2 System Administrators
 - 2 Administrative Staff

IR Imager Example

<u>Element</u>	Earth THEMIS	<u>Mars THEMIS</u>
Altitude	520 km	400 km
# Spectral Bands	8	10
Ground Velocity	7.0 km/sec	3.0 km/sec
Effective Aperture	37 cm	12 cm
Array Size	640 x 480	320 x 240
Detector Size	25 µm (95% fill)	50 µm (60% fill)
Frame Rate	48 Hz	30 Hz
Time Delay Integration	40 samples	16 samples
IFOV (with IMC)	40 m x 40 m	100 x 100 (no IMC)
Swath Width	20 km	32 km
NEDT	0.2 K (@295 K)	0.1k (@295K)